Particle Characterisation in Chemical Looping Combustion

Chern Yean Sim • Prof. Vida Sharifi • Prof. Jim Swithenbank
Department of Chemical and Biological Engineering, Sheffield University
Mappin Street, Sheffield, S1 3JD, UK

Main Objectives
- To investigate and characterise the morphological and compositional changes in particles such as metal oxide particles after multiple reduction-reoxidation cycles

Chemical Looping Concept
Fuel Reduction:
\[\text{Fe}_2\text{O}_3 + \text{H}_2 \rightarrow \text{Fe} + \text{H}_2\text{O} \]
Air Oxidation:
\[\text{Fe} + \frac{1}{2}\text{O}_2 \rightarrow \text{Fe}_2\text{O}_3 \]
Overall:
\[\text{Fe}_2\text{O}_3 + \text{H}_2 \rightarrow \text{Fe} + \text{H}_2\text{O} + \frac{1}{2}\text{O}_2 \]

Experimental Program
Concept can be replaced for the production of H2 by introducing steam into the air oxidizer

Operating Conditions
- Pressure: 1 bar
- Temperature: 800°C
- Volatilisation Temperature: 910°C
- Oxidation and Reduction Temperatures: 800°C
- Inlet Air Flow Rate: 1000 L/min
- Inlet Gas Flow Rate: 25 L/min

Fuel Analysis
<table>
<thead>
<tr>
<th>Sample</th>
<th>Cu</th>
<th>Ni</th>
<th>Al</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Reacted</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Surface Area & Pore Size
Fresh Iron Oxide
- Rapid decrease in BET surface area after 10 cycles (Internal Pore Sintering)

Scanning Electron Microscope
- Fresh Iron Oxide
- Reacted Iron Oxide (50 Cycles)
- Presence of cracks in the reacted iron oxide particles (attrition)
- Agglomerates on the surface of reacted particles larger than those in fresh particles (Sintering)

Conclusions
- Unsupported iron oxide in stable up to 50 cycles with a working lifetime of about 7.3 hours
- Absence of support causes the iron oxide particles to undergo greater rates of sintering and ash deposition blocking active sites of the particles
- Supported copper oxide remains stable with a working lifetime of about 100 cycles (25 hours)
- Alumina support allows the particles to be robust and able to withstand sintering and blockage of active sites due to ash deposition

Acknowledgments
Chern Yean Sim, Vida Sharifi, Jim Swithenbank, Chin-Chuan Chern and Xianxin Yee
EPSRC (Grant no. EP/E034518/1)